Specificity of KMA.CAR T cells against a novel B cell target called kappa myeloma antigen (KMA)
B cell development in the germinal centre: genesis of KMA and LMA expression

*NFkB binds to the enhancer element of the kappa light chain gene and initiates expression and V\(\kappa\) to J\(\kappa\) recombination (Schlissel and Baltimore (1989) Cell)

**KMA and LMA expressed during CSR and T cell induced selection and differentiation

“The germinal centre (GC) of lymphoid organs is the main structure where antigen-activated B cells diversify their immunoglobulin genes by somatic hypermutation (SHM) to generate high-affinity antibodies” (Klein and Dalla-Favera. Nat Rev Immunol. 2008; 8:22-23).

Can KMA or LMA malignant plasma cells re-enter GC?
KMA: a novel antigen on the surface of kappa restricted myeloma cells

- **KappaMab** (formerly MDX-1097) binds specifically to KMA a cell surface antigen found on:
 - Kappa restricted myeloma cells and cell lines, other malignant B cells,
 - SLE and RA peripheral blood B cells,
 - a small population of plasmablasts in normal tonsillar, salivary gland and secondary lymphoid tissues\(^1\)\(^-\)\(^6\)

- **KMA** is **not** detected on normal B cells, lambda myeloma cells or other immune cells and KappaMab does not bind to intact Igk\(^1\)\(^-\)\(^6\)

- **KMA** is expressed on plasma cells at all stages of myeloma disease from the premalignant stage (MGUS) through to relapsed refractory MM and on bone marrow plasma cells in plasmacytomas and amyloidosis\(^7\),\(^8\)

- The range of KMA antigen density is greater than BCMA on myeloma cells and they are not always co-expressed \(^7\),\(^8\)

LMA: a novel antigen on the surface of lambda restricted myeloma cells

- LambdaMabs (10B3 and 7F11) are specific to LMA which is expressed on:
 - Lambda restricted myeloma and amyloidosis plasma cells,
 - SLE and RA peripheral blood B cells,
 - a small population of plasmablasts in normal tonsillar, salivary gland and mucosal secondary lymphoid tissues1-4.

- LMA is **not** detected on normal B cells, kappa myeloma cells or other immune cells and LambdaMabs do not bind to intact immunoglobulin, Ig\textsubscript{\lambda}2.

- LMA is expressed on malignant plasma cells at all stages of myeloma disease (MGUS through relapsed refractory MM) and on bone marrow plasma cells in amyloidosis and plasmacytomas1,3.

- The range of LMA antigen density is greater than BCMA on myeloma cells and they are not always co-expressed 1,3.

1Sartor et al. (2021) Blood, 138, S1:1595; 2Asvadi et al (2013) Haematologica;98(s1); P756: 3 TPL Path Labs GmbH Sasbacher Str. 10 D-79111, Freiburg, Germany
4Sartor et al. (2022) Blood, 140, S1:4211-4212
KappaMab: Mechanisms of action

- **IMiDs increase KMA or LMA expression** on myeloma cells and increase KappaMab antibody dependent cellular cytotoxicity (ADCC)\(^1,2\)

- KappaMab also induces antibody dependent cellular phagocytosis (ADCP) in myeloma cells\(^3\)

- KMA is not internalised upon antibody binding\(^4\)

- In a phase I clinical trial, KappaMab **decreased** Interferon-\(\gamma\) induced CXCR3 binding ligands CXCL9 and CXCL10 that are associated with leukocyte trafficking\(^5\)
 - **Increased** CXCL9 and CXCL10 are involved in aberrant trafficking and fate of immune effector cells in myeloma
 - **Increased** serum levels associated with poor overall survival in myeloma\(^6-9\)

Lead asset KappaMab - Phase IIb results

KappaMab (10mg/kg) boosts efficacy of Revlimid and dexamethasone (Rd)

- Patients had **relapsed, refractory** myeloma and disease was progressing

- KappaMab **improved the depth of response, increased Overall Response Rate (ORR)** compared to the matched Case Control patient group from the Australian patient registry

- The median Overall Survival has not been reached as 2 patients remain on therapy

- There were **no haematological toxicities associated with KappaMab** and the safety profile was similar to that of len/dex in the literature

Patients were resistant/refractory (1-3 lines)
Failed an IMiD (~50%),
Failed PI (~90%)
Failed an autologous stem cell transplant (~50%)

KMA.CAR T cell optimisation

Schematic of lentivirus – DNA construct transduction – KMA.CAR T cells

- **CellVec** optimised the EF1 alpha promoter
- Demonstrated efficient CAR expression upon vector genome integration
- **KMA.CAR T cell preclinical and in vivo studies** were conducted by the Centre of Excellence in Cellular Immunotherapy at Peter Mac (CoE_CI) in collaboration with HaemaLogiX

1. Image by user15245033 on Freepik

Functional expression and specificity of the **KMA.CAR** was confirmed by *in vitro* cytotoxicity experiments

- **KMA positive JJN3** - kappa myeloma cell line
- **KMA negative OPM2** - lambda myeloma cell line

Cytotoxicity of anti-KMA CAR-T cells assessed by Calcein-release assay over 6-hour co-culture with KMA+ JJN3 cells or KMA- OPM2 cells at indicated effector:target ratio

Li J et al. *Cancer Res.* 2023; 83 (7 Supplement): 4074 (CoE_CI)
Anti-KMA CAR-T cells display a predominant Tscm phenotype

Phenotype of anti-KMA CAR-T cells assessed by flow cytometry over 14 days in culture

Interferon-gamma release by anti-KMA CAR-T cells assessed by cytokine bead array over 6-hour co-culture with KMA+ JJN3 cells at indicated effector:target ratio (n=3)

CD8+ and CD4+ CAR-T cells

<table>
<thead>
<tr>
<th>% T cells</th>
<th>D7</th>
<th>D10</th>
<th>D12</th>
<th>D14</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8+ CAR-T</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>CD4+ CAR-T</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Tem – Effector memory T cells
Tcm – Central memory T cells
Tscm – Stem memory T cells
Temra – Effector memory RA1 T cells

Li J et al. *Cancer Res.* 2023; 83 (7_Supplement): 4074 (CoE_CI)
In Vivo KMA.CAR T cell therapy – study design

Schematic of treatment schedule for in vivo testing of anti-KMA-CAR-T cells

Li J et al. Cancer Res. 2023; 83 (7_Supplement): 4074 (CoE_CI)
In Vivo KMA.CAR T cell therapy - animal survival

The experiment went to Day 110 with no further deaths in the cohort given 5.0e6 CAR T cells.

- This study demonstrated that the KMA-CAR can evoke potent, long-term antigen specific anti-tumour responses in vivo.

Li J et al. Cancer Res. 2023; 83 (7_Supplement): 4074 (CoE_CI)
In Vivo Therapy – KMA.CAR T Cell persistence

(A) Day 31 post CAR-T cell injection

(B) Day 99 post CAR-T cell injection

Analysis of KMA-CAR-T cell persistence in the peripheral blood of treated mice at days 31 (A) and 99 (B) post T cell injection

Li J et al. Cancer Res. 2023; 83 (7_Supplement): 4074 (CoE_CI)
HaemaLogiX Ltd immunotherapy assets

- The completed preclinical studies demonstrated that the KMA-CAR T cell can evoke potent, long-term antigen specific and anti-tumour responses \textit{in vivo}.

- A phase I KMA.CAR T cell in myeloma patients with RRMM has been initiated with the Centre of Excellence in Cellular Immunotherapy at Peter Mac in collaboration with HaemaLogiX.

- HLX future development includes LMA.CAR T cells and KMA and LMA bispecifics.
Acknowledgments

Centre of Excellence in Cellular Immunotherapy,

Peter Mac
Professor Simon Harrison
Associate Professor Jane Oliaro
Dr Jessica Li
Dr Nicole Haynes
Dr Katherine Cummins

CellVec
Dr Lucas Chan
Dr Fabio Michelet

Westmead Institute of Medical Research (WIMR)
Dr Ken Micklethwaite
Dr Kavitha Gowrishankar