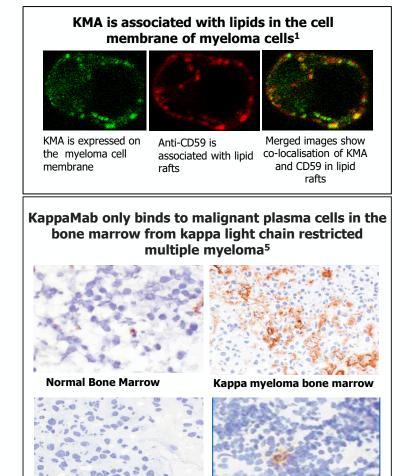


B cell development in the germinal centre: genesis of KMA and **LMA** expression

"The germinal centre (GC) of lymphoid organs is the main structure where antigen-activated B cells diversify their immunoglobulin genes by somatic hypermutation (SHM) to generate high-affinity antibodies" (Klein and Dalla-Favera. Nat Rev Immunol. 2008; 8:22-23).


^{*}NFkB binds to the enhancer element of the kappa light chain gene and initiates expression and $V\kappa$ to $J\kappa$ recombination (Schlissel and Baltimore (1989) Cell)

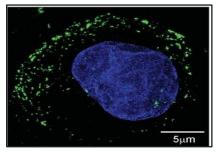
^{**}KMA and LMA expressed during CSR and T cell induced selection and differentiation

KMA: a novel antigen on the surface of kappa restricted myeloma cells

- KappaMab (formerly MDX-1097) binds specifically to KMA a cell surface antigen found on:
 - Kappa restricted myeloma cells and cell lines, other malignant B cells,
 - SLE and RA peripheral blood B cells,
 - a small population of plasmablasts in normal tonsillar, salivary gland and secondary lymphoid tissues¹⁻⁶
- **KMA** is **not** detected on normal B cells, lambda myeloma cells or other immune cells and KappaMab does not bind to intact Igk¹⁻⁶
- **KMA** is expressed on plasma cells at all stages of myeloma disease from the premalignant stage (MGUS) through to relapsed refractory MM and on bone marrow plasma cells in plasmacytomas and amyloidosis^{7,8}
- The range of KMA antigen density is greater than BCMA on myeloma cells and they are not always co-expressed ^{7,8}

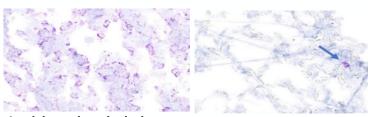
¹Asvadi et al. (2015) BJH; ²Boux et al. (1983) J Exp Med; ³Walker et al 1985 Plenum Pub Corp; ⁴Goodnow and Raison (1985) J Immunol; ⁵Charles River Laboratories, Pathology Associates (PAI), Maryland, USA). Raison and Boux 1985 Mol Immunol; Sartor et al. (2021) Blood, 138, S1:1595; Sartor et al. (2022) Blood, 140, S1:4211-4212

Lambda mveloma bone marrow

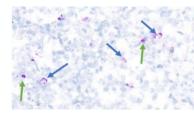

Occasional mononuclear

cells in salivary gland

LMA: a novel antigen on the surface of lambda restricted myeloma cells


- LambdaMabs (10B3 and 7F11) are specific to LMA which is expressed on:
 - Lambda restricted myeloma and amyloidosis plasma cells,
 - SLE and RA peripheral blood B cells,
 - a small population of plasmablasts in normal tonsillar, salivary gland and mucosal secondary lymphoid tissues¹⁻⁴.
- **LMA** is **not** detected on normal B cells, kappa myeloma cells or other immune cells and LambdaMabs do not bind to intact immunoglobulin, Igλ²
- **LMA** is expressed on malignant plasma cells at all stages of myeloma disease (MGUS through relapsed refractory MM) and on bone marrow plasma cells in amyloidosis and plasmacytomas^{1,3}
- The range of LMA antigen density is greater than BCMA on myeloma cells and they are not always co-expressed 1,3

LMA is associated with lipids in the cell membrane

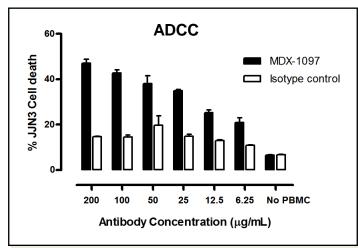

3D-structured illumination microscopy image of a lambda myeloma cell stained with DAPI (blue) in the nucleus and LMab Alexa Fluor® 488 (green) on the cell membrane

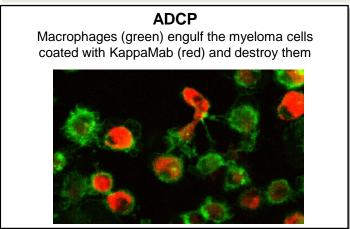
LambdaMabs stain myeloma plasma cells and occasional mononuclear cells in secondary lymphoid tissue³

Lambda myeloma in the lung (plasmacytoma)

Mononuclear cells in normal lung

Mononuclear cells in tonsil


Mononuclear cells in colon


¹Sartor et al. (2021) Blood,138, S1:1595: ²Asvadi et al (2013) Haematologica;98(s1); P756: ³ TPL Path Labs GmbH Sasbacher Str. 10 D-79111, Freiburg, Germany ⁴Sartor et al. (2022) *Blood*, 140, S1:4211-4212

KappaMab: Mechanisms of action

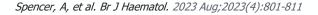
- IMiDs increase KMA or LMA expression on myeloma cells and increase KappaMab antibody dependent cellular cytotoxicity (ADCC)^{1,2}
- KappaMab also induces antibody dependent cellular phagocytosis (ADCP) in myeloma cells³
- KMA is not internalised upon antibody binding⁴
- In a phase I clinical trial, KappaMab **decreased** Interferon-y induced CXCR3 binding ligands CXCL9 and CXCL10 that are associated with leukocyte trafficking⁵
 - **Increased** CXCL9 and CXCL10 are involved in aberrant trafficking and fate of immune effector cells in myeloma
 - **Increased** serum levels associated with poor overall survival in myeloma⁶⁻⁹

¹Asvadi et al. (2015) BJH; ²Cuddihy et al. (2012), Blood 120(21): 4012: ³Wong et al. (2009) Blood, 114(22): 1846; ⁴Boux et al. (1984) Eur J Immunol 14:216-222; ⁵Spencer et al. (2019) BCJ; ⁶Feyler et al. (2009) BJH; ⁷Giulianai et al. (2006) Haematologica; 8Ponzetta et al. (2015) Cancer Res, 9Bolomsky et al. (2016) Leukemia and Lymphoma

Lead asset KappaMab - Phase IIb results

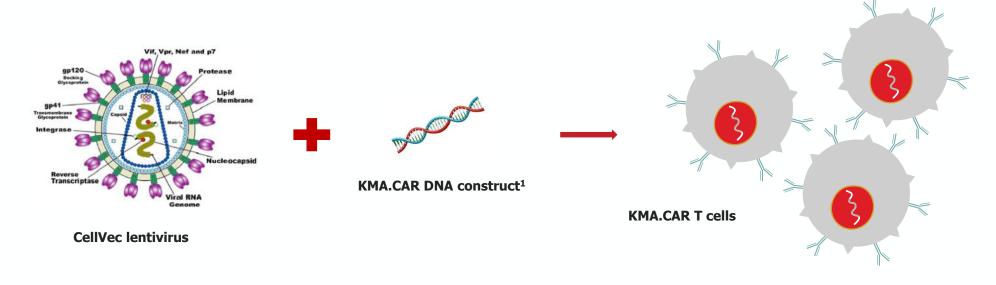
KappaMab (10mg/kg) boosts efficacy of Revlimid and dexamethasone (Rd)

- Patients had **relapsed**, **refractory** myeloma and disease was progressing
- KappaMab improved the depth of response, increased Overall Response Rate (ORR) compared to the matched Case Control patient group from the Australian patient registry
- The median Overall Survival has not been reached as 2 patients remain on therapy
- There were **no haematological toxicities associated** with KappaMab and the safety profile was similar to that of len/dex in the literature



Patients were resistant/refractory (1-3 lines)

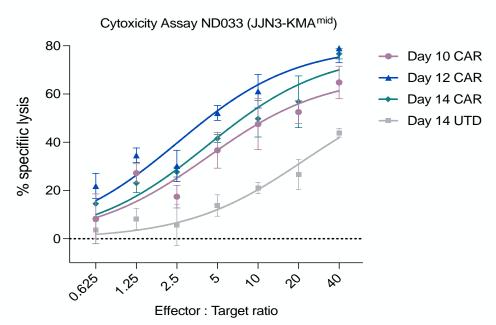
Failed an IMiD (~50%),


Failed PI (~90%)

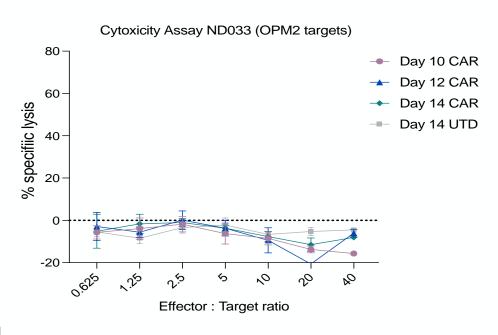
Failed an autologous stem cell transplant (~50%)

KMA.CAR T cell optimisation

Schematic of lentivirus – DNA construct transduction – KMA.CAR T cells



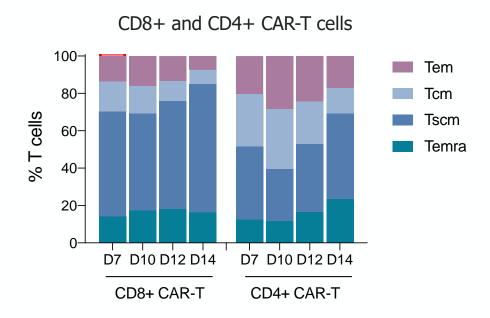
- **CellVec** optimised the EF1 alpha promoter
- Demonstrated efficient CAR expression upon vector genome integration
- KMA.CAR T cell preclinical and *in vivo* studies were conducted by the Centre of Excellence in Cellular Immunotherapy at Peter Mac (CoE_CI) in collaboration with HaemaLogiX


¹https://www.freepik.com/free-vector/realistic-vector-icon-dna-medical-concept-element_35188118.htm">Image by user15245033 on Freepik

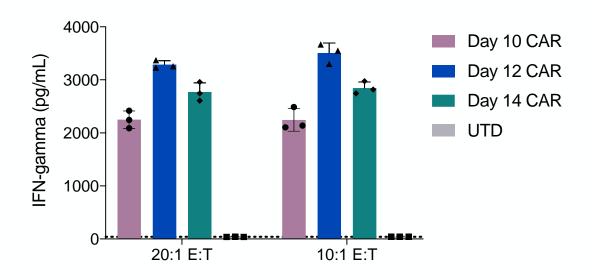
Functional expression and specificity of the KMA.CAR was confirmed by in vitro cytotoxicity experiments

KMA positive JJN3 - kappa myeloma cell line

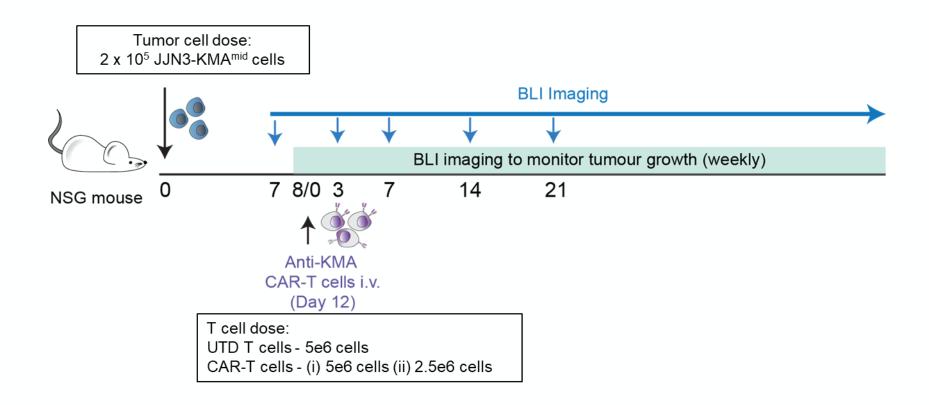
KMA negative OPM2 - lambda myeloma cell line


UTD=untransduced

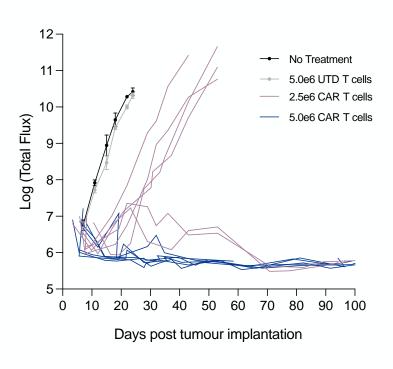
Cytotoxicity of anti-KMA CAR-T cells assessed by Calcein-release assay over 6-hour co-culture with KMA+ JJN3 cells or KMA- OPM2 cells at indicated effector:target ratio

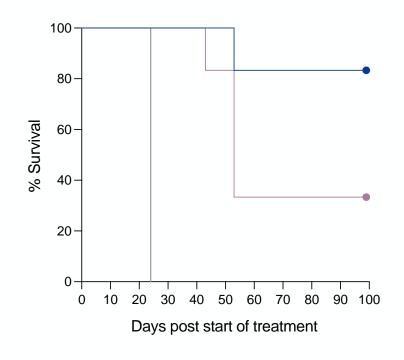

Anti-KMA CAR-T cells display a predominant Tscm phenotype

Phenotype of anti-KMA CAR-T cells assessed by flow cytometry over 14 days in culture


Interferon-gamma release by anti-KMA CAR-T cells assessed by cytokine bead array over 6-hour co-culture with KMA+ JJN3 cells at indicated effector:target ratio (n=3)

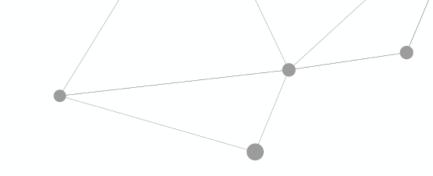
Tem – Effector memory T cells Tcm – Central memory T cells Tscm – Stem memory T cells Temra – Effector memory RA⁺ T cells


In Vivo KMA.CAR T cell therapy – study design

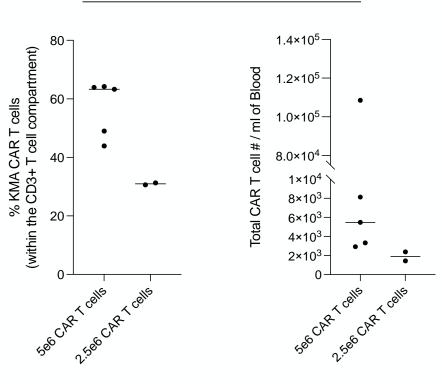


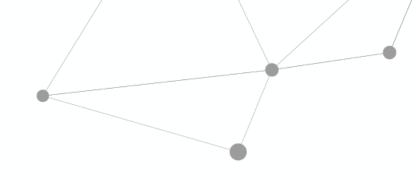
Schematic of treatment schedule for in vivo testing of anti-KMA-CAR-T cells

In Vivo KMA.CAR T cell therapy - animal survival

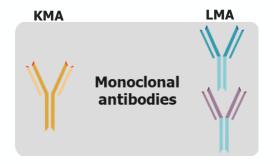

The experiment went to Day 110 with no further deaths in the cohort given 5.0e6 CAR T cells

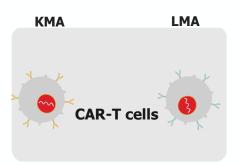
This study demonstrated that the KMA-CAR can evoke potent, long-term antigen specific anti-tumour responses in vivo

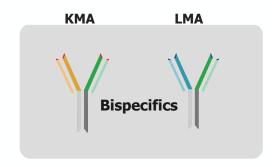

In Vivo Therapy – KMA.CAR T Cell persistence


1×10⁵ % KMA CAR-T cells (within the CD3+ T cell compartment) 0.0022 0.0043 KMA-CAR T cells / ml of blood 8×10⁴ 6×10⁴ 4×10⁴ 2×10⁴

(B) Day 99 post CAR-T cell injection




Analysis of KMA-CAR-T cell persistence in the peripheral blood of treated mice at days 31 (A) and 99 (B) post T cell injection


HaemaLogiX Ltd immunotherapy assets

- The completed preclinical studies demonstrated that the KMA-CAR T cell can evoke potent, long-term antigen specific and anti-tumour responses in vivo
- A phase I KMA.CAR T cell in myeloma patients with RRMM has been initiated with the Centre of Excellence in Cellular Immunotherapy at Peter Mac in collaboration with HaemaLogiX
- HLX future development includes LMA.CAR T cells and KMA and LMA bispecifics

Acknowledgments

Centre of Excellence in Cellular Immunotherapy,

Peter Mac Dr Lucas Chan

Professor Simon Harrison Dr Fabio Michelet

Associate Professor Jane Oliaro

Dr Jessica Li

Dr Nicole Haynes

Dr Katherine Cummins

Westmead Institute of Medical Research (WIMR)

Dr Ken Micklethwaite

CellVec

Dr Kavitha Gowrishankar